Example 1 - Investigation of a Slender Nonsway Column

Determine the adequacy of a $4^{\prime \prime} \times 20^{\prime \prime}$ column ${ }^{1}$ with $3-\# 11$ bars on each $14^{\prime \prime}$ side in a nonsway frame with a clear height of $22^{\prime} 6^{\prime \prime}$. Use $\mathrm{k}=1.0$.

The concrete used is 6000 psi and the reinforcing steel is $60,000 \mathrm{psi}$.
The factored load values for the column under consideration are as follows:

P (kip)	115 kips
Top Muy (kip-ft)	279 ft -kips
Bottom M_{uy} (kip-ft)	-279 ft -kips

From the File menu, choose New. Any input data is cleared and the default values are restored.

1. From the Input menu, choose General Information.

- Input the РROJECT header.
- Select English units and ACI 318-14 code.
- Select Biaxial for run axis, Investigation for run option and Yes for Consider Slenderness?
- Choose Ок.

2. From the Input menu, choose Material Properties.

- Input 4.5 for the CONCRETE STRENGTH. Change the Reinforcing STEEL STRENGTH to 50 . Other properties are computed and will be

General Information	\underline{x}
Labels	
spColumn Manual Example 2	
Column:	Engineer:
Wang 15.18.5	- SP
Design Code	
ACI 318-14	∇
UnitsC. EnglishC Metric $\quad\left[\begin{array}{l}\text { Run Option } \\ \text { C Investigation } \\ C\end{array}\right.$	
$\left\{\begin{array}{l}\text { Run Axis } \\ C \text { About } X \text {-Axis } \quad \text { C Biaxial } \\ C \text { About } Y \text {-Axis }\end{array}\right.$	
Consider slenderness? © Yes C No	
QK	Cancel

- Choose Ok.

From the Input menu, choose Section | Rectangular.

- Input 20 and 14 for the section width (along X) and depth (along Y).
- Choose Ок.

[^0]
3. From the Input menu, choose Reinforcement | Sides Different.

- Input 2-\#11 bars for TOP and Bottom and 1-\#11 for LEFT and RIGHT. Input 1.5 in for the cover and select LONGITUDINAL BARS.
- Choose Ок.

4. From the Input menu, choose Slenderness | Design Column.

- Input 22.5 for the column CLEAR HEIGHT.
- Check NONSWAY FRAME and select InPUT 'K' FACTORS.
- Choose OK.

5. From the Input menu, choose Loads | Service.

- Under LIVE, input 71.875 for the AXIAL LOAD, 0 for the X-Moments @Top, 0 for the X-MOMENTS @ Bot, 174.375 for the Y-MOMENTs @Top and -174.375 for the Y-MOMENTS @bottom, respectively.
- In column SUSTAINED LOAD keep default setting for dead load equal 100%.
- Choose InSERT to add the entry to the list box.
- Choose OK .

6. From the Input menu, choose Loads | Load Combinations.

- If the list displays thirteen combinations, choose only the second load combination U2 and delete all the others by selecting them and using DELETE. Choose OK.

7. From the Solve menu, choose Execute.

- The solver of the program is started and, upon completion, displays the interaction diagram of the section with the load point plotted within the diagram.

8. From the View menu, choose Results.

- Page through the results file.
- Choose File |Exit to quit the spView program and get back to spColumn.

9. From the File menu, choose Print Results.

- Select the printer to send the text results to.
- Choose PRINT.

10. From the File menu, choose Print Screen.

- Select the printer to send the graphical results to.
- Choose PRINT.

STRUCTUREPOINT - spColumn v5. 50 (TM)	Page
Licensed to: StructurePoint. License ID: 00000-0000000-4-2A05D-2206F	2
C: \backslash Program Files (x86) \StructurePoint \backslash spColumn \backslash Examples \backslash Examples-Manual \backslash Example02.col	$10 / 25 / 16$
	$10: 14$ AM

General Information:

Confinement: Tied; \#3 ties with \#11 bars, \#4 with larger bars. $\operatorname{phi}(\mathrm{a})=0.8, \operatorname{phi}(\mathrm{~b})=0.9, \operatorname{phi}(\mathrm{c})=0.65$

Layout: Rectangular
Pattern: Sides Different (Cover to longitudinal reinforcement)
Total steel area: $\mathrm{As}=9.36 \mathrm{in}^{\wedge} 2$ at rho $=3.34 \%$
Minimum clear spacing $=3.39$ in

No.	Load Case	Axial Load kip	$M x @ \underset{k-f t}{T o p}$	$\operatorname{Mx} @ \underset{k-f t}{B o t}$	$\text { My } \underset{k-f t}{T o p}$	My @ Bot
1	Dead	0.00	0.00	0.00	0.00	0.00
	Live	71.88	0.00	0.00	174.38	-174.38
	Wind	0.00	0.00	0.00	0.00	0.00
	EQ	0.00	0.00	0.00	0.00	0.00
	Snow	0.00	0.00	0.00	0.00	0.00

Sustained Load Factors:	
$=====================$	
Load	Factor
Case	$\left(\frac{8}{8}\right)$
-_--	$-=-=-$
Dead	100
Live	0
Wind	0
EQ	0
Snow	0

Load Combinations:
$\mathrm{U} 1=1.200 \star$ Dead $+1.600 \star$ Live $+0.000 \star$ Wind $+0.00{ }^{\star}$ EarthQuake $+0.500 \star$ Snow

Column	Axis	Height ft	Width in	$\begin{aligned} & \text { Depth } \\ & \text { in } \end{aligned}$	$\stackrel{I}{i n^{\wedge} 4}$	$\begin{aligned} & \mathrm{f}^{\prime} \mathrm{c} \\ & \mathrm{ksi} \end{aligned}$	$\begin{array}{r} \text { EC } \\ \mathrm{ksi} \end{array}$
Design	X	22.5	20	14	4573.33	4.5	3823.68
	Y	22.5	20	14	9333.33	4.5	3823.68
Above	X	(no column	specified				
	Y	(no column	specified				
Below	X	(no column	specified				
	Y	(no column	specified				
X-Beams		Length	Width	Depth	I	$\mathrm{f}^{\prime} \mathrm{c}$	Ec
Location		ft	in	in	in^4	ksi	ksi

Above Left (no beam specified...)
Above Right (no beam specified...)
Above Right (no beam specified...)
Below Left (no beam specified...)
Below Left (no beam specified...)
Below Right (no beam specified...)
Effective Length Factors:

Axis	Psi(top)	Psi (bot)	k (Nonsway)	k(Sway)	$\mathrm{klu} / \mathrm{r}$
-	0.000	0.000	1.000	(N/A)	66.81
X	0.000	0.000	1.000	(N/A)	46.77

Moment Magnification Factors:											
Stiffness reduction factor, phi (K) $=0.75$											
Cracked-section coefficients: cI(beams) $=0.35 ; \mathrm{cI}($ columns $)=0.7$											
$0.2 * E{ }^{*} \mathrm{Ig}+$ Es*Ise $(\mathrm{X}$-axis) $=7.66 \mathrm{e}+006 \mathrm{kip}-\mathrm{in}$ ^2											
$0.2 \star E{ }^{\star} \mathrm{Ig}+\mathrm{Es}$ *Ise $(\mathrm{Y}$-axis) $=2.36 \mathrm{e}+007 \mathrm{kip}-\mathrm{in}$ ^2											
Ld/Comb	SumPu(kip)	Pc(kip)	SumPc (kip)	Betads	Deltas	$\mathrm{Pu}(\mathrm{kip})$	$\mathrm{k}^{\prime} \mathrm{lu} / \mathrm{r}$	Pc (kip)	Betad	Cm	Delta
1 U1	(N / A)	(N/A)	(N/A)	(N/A)	(N/A)	115.00	(N/A)	1036.79	0.000	1.000	1.174
Ld/Comb	SumPu(kip)	Pc (kip)	SumPc (kip)	Betads	Deltas	$\mathrm{Pu}(\mathrm{kip})$	$\mathrm{k}^{\prime} \mathrm{lu} / \mathrm{r}$	Pc(kip)	Betad	Cm	Delta
1 U1	(N / A)	(N / A)	(N/A)	(N/A)	(N / A)	115.00	(N/A)	3199.27	0.000	1.000	1.050

Factored Moments due to First-Order and Second-Order Effects:

Minimum eccentricity, Ex,min $=1.02$ in
Minimum eccentricity, Ey,min $=1.2$ in
NOTE: Each loading combination includes the following cases:
First line - at column top
Second line - at column bottom

CONCRETE SOFTWARE SOLUTIONS

STRUCTUREPOINT - spColumn v5. 50 (TM)
Licensed to: StructurePoint. License ID: 00000-0000000-4-2A05D-2206F
Page 4
10/25/16
C: \Program Files (x86) \StructurePoint\spColumn\Examples \Examples-Manual\Example02.col
10:14 AM

Factored Loads and Moments with Corresponding Capacities:
NOTE: Each loading combination includes the following cases:
First line - at column top

Example 2 - Design of a Slender Column in a Sway Frame

Design a square column ${ }^{2}$ with a clear height of 16 ft . The column is sway and subjected to dead, live and wind loads as shown below.

	Dead	Live	Wind
P (kip)	380	140	0
Top M_{x} (kip-ft)	32	20	50
Bottom M_{x} (kip-	54	36	50
ft)			

The column is to be checked for the following load combinations:
$\mathrm{U} 1=1.2 \mathrm{D}+1.6 \mathrm{~L}$
$\mathrm{U} 2=1.2 \mathrm{D}+0.5 \mathrm{~L}+1.6 \mathrm{~W}$

The calculations in the reference are done based on the load combination U2.

In practice, the ratio $\Sigma P_{c} / P_{c}$ would have to be calculated before the problem can be attempted, using a trial value of $\sum \mathrm{P}_{\mathrm{c}} / \mathrm{P}_{\mathrm{c}}$. Here, the value of $\sum \mathrm{P}_{\mathrm{c}} / \mathrm{P}_{\mathrm{c}}$ used is 28.67 based on the reference value of P_{c}. There are 14 interior columns, 18 exterior columns and 4 corner columns. Therefore, the value of $\Sigma P_{u} / P_{u}=14+18 * 2 / 3+4 * 1 / 3=27.33$ irrespective of the load combination being used.

1. From the File menu, choose New. Any input data is cleared and the
 default values are restored.
2. From the Input menu, choose General Information.

- Input the PROJECT header.
- Select English units and ACI 318-14 code.
- Select About X-Axis for run axis, Design for run option and Yes for Consider slenderness?
- Choose OK.

3. From the Input menu, pick Material Properties.

- Input 5 for the concrete strength. Other properties are computed and will be accepted.
- Choose OK.

[^1]| Material Properties | | | | |
| :---: | :---: | :---: | :---: | :---: |
| - Concrete -Reinforcing Steel | | | | |
| Strength, f'c: 5 | ksi | Strength, | 60 | |
| V Standard | | V Stand | | |
| Elasticity, Ec: 4030.51 | ksi | Elasticity, | 29000 | |
| Max stress, fic: 4.25 | ksi | | | |
| Beta(1): 0.8 | | Compres | controlle | |
| Ultimate strain: 0.003 | | Eps_yt: | 0.0020 | |
| | QK | Cancel | | |

4. From the Input menu, pick Section \| Rectangular.

- Input 18 and 18 for the Width (ALONG X) and DEPTH (ALONG Y) under both Start and End options.
- Choose OK.

Rectangular Section		
Start	End	Increment
Width (along X): 18		$\sqrt{0}$
Depth (along Y): 18	18	0
QK		

5. From the Input menu, choose Reinforcement | All Sides Equal

- Input 4-\#10 bars for Minimum, and 40-\#10 bars for Maximum and 1.5 in for the cover, and select TRANSVERSE BARS and RECTANGULAR Bar Layout.
- Choose OK.

6. From the Input menu, choose Slenderness | Design Column.

- Input 16 for the column Clear Height.
- Check Sway frame
- Under SWAY CRITERIA, input 28.67 and 27.33 for the $\Sigma \mathrm{Pc} / \mathrm{Pc}$ and $\Sigma \mathrm{Pu} / \mathrm{Pu}$, respectively.
- Leave 2^{ND} ORDER EFFECT ALONG LENGTH option checked (default)
- Select COMPUTE 'K’ FACTORS.
- Choose OK.

7. From the Input menu, choose Slenderness | Columns Above/Below.

- Clear the No column Specified option.
- Input 11 for the column height (center-to-center) under HEIGHT (C/C) and leave the other data as is.
- Choose Copy to Column Below.
- Choose OK.

8. From the Input menu, choose Slenderness |X-Beams.

- Choose Above Left.
- Clear the No BEAM SPECIFIED option.
- Input 20 for the span (center-to-center) under $\operatorname{SPAN}(\mathrm{C} / \mathrm{C})$.
- Input 0.00 and 0.00 for the WIDTH and DEPTH, respectively.
- Input 21436.6 for the moment of inertia under INERTIA.
- Leave the other data as it is.
- Choose Above Right and click on Copy From Beam Left.
- Choose Below Left and click on Copy From Beam Above.
- Choose Below Right and click on Copy From Beam Above.
- Choose OK.

X-Beams (perpendicular to X)	
Beam Location:	
(Above Lefl	C Above Right
C Below Left	C Below Right
-Beam Above Left	
Γ No beam specified	Copy From Beam Right
Span (c/c): 20	f'c: $\sqrt{5} \mathrm{ksi}$
Width: 0	Ec: $\sqrt{4030.51} \mathrm{ksi}$
Depth: $\quad 0$	in Inertia: ${ }^{21436.6}$ in 4
QK	Cancel

9. From the Input menu, choose Loads | Service.

- Under Dead, input 380, 32 and -54 for the Axial Load, X-Moments and Y-Moments respectively.
- Under Live, input 140,20 and -36 for the Axial Load, X-Moments and Y-Moments, respectively.
- Under Wind, input 0,50 and -50 for the AXial Load, X-Moments and Y-Moments, respectively.

- Under SUSTAINED LOAD keep the default settings of 100% for dead and 0% for all other load cases.
- Choose InSERT to add the entry to the list box.
- Choose OK.

10. From the Input menu, choose Loads | Load Combinations.

- If the list displays thirteen combinations, leave the first and second as they are. Delete the remaining combinations using DELETE.

11. From the Solve menu, choose Execute.

- The solver of the program is started and, upon completion, displays the interaction diagram of the section with the load points plotted within the diagram.

12. From the View menu, choose Results.

- Page through the results file.
- Choose Exit to quit the spView program and get back to spColumn.

13. From the File menu, choose Print Results.

- Select the printer to send the text results to.
- Choose PRINT.

14. From the File menu, choose Print Screen.

- Select the printer to send the graphical results to.
- Choose PRINT.

STRUCTUREPOINT - spColumn v5. 50 (TM)	Page
Licensed to: StructurePoint. License ID: 00000-0000000-4-2A05D-2206F	2
C: \backslash Program Files (x86) \StructurePoint \backslash spColumn \backslash Examples \backslash Examples-Manual \backslash Example03.col	$10 / 25 / 16$
	$10: 19$ AM

General Information:
File Name: C:\Program Files (x86) \StructurePoint\spColumn\Examples \backslash Examples-Manual\Example03.col Project: spColumn Manual Example 3
Column: Hassoun 12.4 Engineer: SP
Code: ACI 318-14 Units: English

Run Option: Design Slenderness: Considered
Run Axis: X-axis Column Type: Structural
Material Properties:

Bar selection: Minimum number of bars
Asmin $=0.01 * \mathrm{Ag}=3.24$ in^$^{\wedge} 2$, Asmax $=0.08 * \mathrm{Ag}=25.92$ in^2 $^{\wedge}$
Confinement: Tied; \#3 ties with \#10 bars, \#4 with larger bars. $\operatorname{phi}(\mathrm{a})=0.8, \operatorname{phi}(\mathrm{~b})=0.9, \operatorname{phi}(\mathrm{c})=0.65$

Layout: Rectangular
Pattern: All Sides Equal (Cover to transverse reinforcement)
Total steel area: As $=15.24 \mathrm{in}^{\wedge} 2$ at $\mathrm{rho}=4.70 \%$
Minimum clear spacing $=3.06$ in
12 \#10 Cover $=1.5$ in
Service Loads:

Load No. Case	Axial Load kip	MX	$\underbrace{\mathrm{Top}}_{\mathrm{k}-\mathrm{ft}}$	MX	$\underbrace{\text { Bot }}_{\mathrm{k}-\mathrm{ft}}$	My	$\underbrace{\mathrm{Top}}_{\mathrm{k} \rightarrow \mathrm{ft}}$		$\underset{\mathrm{k}-\mathrm{ft}}{\mathrm{Bot}}$
1 Dead	380.00		32.00		-54.00		0.00		0.00
Live	140.00		20.00		-36.00		0.00		0.00
Wind	0.00		50.00		-50.00		0.00		0.00
EQ	0.00		0.00		0.00		0.00		0.00
Snow	0.00		0.00		0.00		0.00		0.00
Sustained Load Factors:									
Load Factor Case (8)									
Dead 100									
Live	0								
Wind	0								
EQ	0								
Snow	0								

[^2]| Slenderness: | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sway Criteria: | | | | | | |
| X-axis: Sway column. SumPc $=28.67 * \mathrm{Pc} \quad \mathrm{SumPu}=27.33 * \mathrm{Pu}$ Second-order effects along length considered | | | | | | |
| Column Axis | $\begin{array}{r} \text { Height } \\ \text { ft } \end{array}$ | Width in | $\begin{aligned} & \text { Depth } \\ & \text { in } \end{aligned}$ | $\stackrel{I}{i n^{\wedge} 4}$ | $\begin{aligned} & \mathrm{f}^{\prime} \mathrm{c} \\ & \mathrm{ksi} \end{aligned}$ | Ec ksi |
| Design X | 16 | 18 | 18 | 8748 | 5 | 4030.51 |
| Above X | 11 | 18 | 18 | 8748 | 5 | 4030.51 |
| Below X | 11 | 18 | 18 | 8748 | 5 | 4030.51 |
| X -Beams | Length | Width | Depth | I | $\mathrm{f}^{\prime} \mathrm{c}$ | Ec |
| Location | ft | in | in | in^4 | ksi | ksi |
| Above Left | 20 | 0 | 0 | 21436.6 | 5 | 4030.51 |
| Above Right | 20 | 0.0001 | 0.0001 | 21436.6 | 5 | 4030.51 |
| Below Left | 20 | 0.0001 | 0.0001 | 21436.6 | 5 | 4030.51 |
| Below Right | 20 | 0.0001 | 0.0001 | 21436.6 | 5 | 4030.51 |
| Effective Length Factors: | | | | | | |
| Axis Psi | top) | Psi (bot) | k (Nonsway) | k(Sway) | | |
| X | . 252 | 1.252 | 0.802 | 1.390 | | |

Moment Magnification Factors:
Stiffness reduction factor, phi $(\mathrm{K})=0.75$
Cracked-section coefficients: cI (beams)
Cracked-section coefficients: $c I\left(\right.$ beams) $=0.35 ; c I\left(\operatorname{col} \mathrm{~m}_{\mathrm{m}}\right)=0.7$
$0.2^{\star} E c^{\star} I g+E s \star I s e(X$-axis $)=2.02 \mathrm{e}+007 \mathrm{kip}-\mathrm{in}^{\wedge} 2$

X-axisLd/Comb	SumPu (kip)	$\begin{aligned} & \text { Pc(kip) } \end{aligned}$	Ends			Along Length					
			SumPc (kip)	Betads	Deltas	Pu(kip)	$k^{\prime} 1 \mathrm{l} / \mathrm{r}$	Pc(kip)	Betad	Cm	Delta
1 U1	18584.40	2792.45	80059.54	0.000	1.448	680.00	(N / A)	5018.30	0.671	0.830	1.013
U2	14375.58	2792.45	80059.54	0.000	1.315	526.00	(N/A)	4490.56	0.867	0.927	1.098

Factored Moments due to First-Order and Second-Order Effects:
$==$
Minimum eccentricity, Ex,min $=1.14$ in

NOTE: Each loading combination includes the following cases:
First line - at column top
Second line - at column bottom

X -axis Load	Mns	Ms		Mmin			2nd Order -------- - Ratio -	
Load Combo			Mu			$\underset{\mathrm{k}-\mathrm{ft}}{\mathrm{Mi}}$	$\begin{array}{r} \text { Mc } \\ k-f t \end{array}$	2nd/1st
1 U1	70.40	0.00	70.40	64.60	M1=	70.40	71.32	1.013
	122.40	-0.00	122.40	64.60	M2 =	122.40	124.00	1.013
1 U2	48.40	80.00	128.40	49.97	M1 $=$	153.58	168.69	1.314
	82.80	80.00	162.80	49.97	M2 =	187.98	206.47	1.268

Factored Loads and Moments with Corresponding Capacities:
Design/Required ratio $\mathrm{PhiMn} / \mathrm{Mu}>=1.00$
NOTE: Each loading combination includes the following cases: First line - at column top
Second line - at column bottom

No.	Load Combo	$\begin{array}{r} \text { Pu } \\ \text { kip } \end{array}$	$\underset{k-f t}{M u x}$	$\underset{k-f t}{\operatorname{Phimnx}}$	PhiMn/Mu	NA depth in	Dt depth in	eps_t	Phi
1	1 U1	680.00	71.32	311.55	4.368	12.43	15.49	0.00074	0.650
2		680.00	124.00	311.55	2.512	12.43	15.49	0.00074	0.650
3	1 U2	526.00	168.69	344.47	2.042	10.76	15.49	0.00132	0.650
4		526.00	206.47	344.47	1.668	10.76	15.49	0.00132	0.650

*** End of output ***

[^0]: ${ }^{1}$ Based on Example 15.8.5 from Reinforced Concrete Design by Chu-Kia Wang, Charles G. Salmon, and Jose A. Pincheira, Seventh Edition, 2007, John Wiley and Sons, Inc.

[^1]: ${ }^{2}$ Based on Example 12.4, pp 409, from Structural Concrete: Theory and Design by M. Nadim Hassoun and Akthem Al-Manaseer, Fourth Edition, 2008, John Wiley and Sons, Inc.

[^2]: Load Combinations:
 $\mathrm{U} 1=1.200 *$ Dead $+1.600 *$ Live $+0.000 *$ Wind $+0.000 *$ EarthQuake $+0.500 *$ Snow
 $\mathrm{U} 2=1.200 *$ Dead $+0.500 *$ Live $+1.600 *$ Wind $+0.000 *$ EarthQuake $+0.500 *$ Snow

